Corrosion of steel reinforcing bars is the most important durability problem for reinforcing structures. Carbonation of concrete results from a chemical reaction that lowers the pH value by enough to initiate corrosion of the rebar. Data on the carbonation depth (mm) and strength (MPa) for a sample of core specimens was taken from a particular building, and all the regression output is provided. We are interested in modeling the strength (from carbonation).
$\mathrm{x}=$ carbonation, $\mathrm{y}=$ strength
Scatterplot: relatively strong, negative, linear relationship.
Population model:

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

$y=$ response variable
$\beta_{0}=$ intercept (value of y when $\mathrm{x}=0$)
$\beta_{1}=$ slope (change in y due to one unit increase in x)
$x=$ explanatory (dependent) variable
$\epsilon=$ residual term

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $27.18294 \quad 1.6513516 .4611 .88 \mathrm{e}-11^{* * *}$
carbonation -0.29756 0.04116 -7.229 2.01e-06 ***

Signif. codes: $0{ }^{\prime * * *} 0.001{ }^{\prime * *} 0.01{ }^{\prime *} 0.05$ '. 0.1 ' 1
Residual standard error: 2.864 on 16 degrees of freedom
Multiple R-squared: 0.7656, Adjusted R-squared: 0.7509
Equation with numerical coefficients:

$$
\hat{y}=27.18-0.298 x
$$

Using the equation, estimate the strength when carbonation depth is 8 mm and again for 20 mm . The observed values of strength for those x -values are, respectively, 22.8 and 17.1 MPa
$(8,22.8),(20,17.1)$
Estimates with sample model equation:

$$
\begin{gathered}
\hat{y}_{\mid x=8}=27.18-0.298(8)=24.8 M P a \\
\hat{y}_{\mid x=20}=27.18-0.298(20)=21.2 M P a
\end{gathered}
$$

Residuals of sample model estimates:
Residual: $e=y-\hat{y}$

$$
\begin{gathered}
e_{\mid x=8}=22.8-24.8=-2<0 \\
e_{\mid x=20}=17.1-21.2=-4.1<0
\end{gathered}
$$

Model has overestimated in these two cases since the residuals are <0
Interpretation of slope and intercept in context:
Slope $\left(\hat{\beta}_{1}\right)$: when carbonation depth increases by one unit (1 mm), strength of concrete decreases by 0.298

Intercept $\left(\hat{\beta}_{0}\right)$: when carbonation depth is $0(x=0)$, strength (y) is 27.18. While there is no $x=0$ in the dataset, this could make logical sense.

Hypotheses for slope test (no intercept test because I am not sure it is appropriate since there is no $\mathrm{x}=0$ in dataset but intercept could (?) make logical sense in context)

$$
H_{0}: \beta_{1}=0 \text { vs. } H_{a}: \beta_{1} \neq 0
$$

$t=-7.229$, pvalue $=2.01 e-06=2.01 \times 10^{-6} \approx 0 \leq \alpha(0.05) \therefore H_{0}$ is rejected. The slope is significant (the relationship between x and y is significant)
$R^{2}=0.7656=76.56 \%$ of the variation in the response can be explained by the linear model (relationship between strength and carbonation). $R^{2}=0.7656=76.56 \% \geq 60 \%$, which is good.
$r= \pm \sqrt{R^{2}}=-\sqrt{0.7656}=-0.87$, since $r>|0.8|$ this is a decently strong, negative, linear relationship

Assumptions:

1. Mean of residuals approx. 0
2. Variance of residuals is constant (same for all values)
3. Independence of residuals
4. Normality of residuals

Assessment of model: slope is significant, both r and R^{2} are good, this is a good model

